首页 > 实用范文

初二数学的练习题(精品多篇)

时间:2025-07-14 07:11:09
初二数学的练习题(精品多篇)(全文共7815字)

[引言]初二数学的练习题(精品多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。

最新八年级数学练习题及答案 篇一

[自我认知]:

1、一般地,在抽样时,将总体分成____的层,然后按一定的比例,从各层独立地___,将各层取

出的个体合在一起作为样本,这种抽样的方法叫做_______.

2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()

A.40B.30C.20D.12

3、从N个编号中要抽取个号码入样,若采用系统抽样方法抽取,则分段间隔应为()

A.B.C.D.

4、为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况,若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()

A.3,2B.2,3C.2,30D.30,2

5、某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()。

A.简单随机抽样B.系统抽样C.分层抽样D.其它抽样方法

6、一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是()。

A.分层抽样B.抽签法C.随机数表法D.系统抽样法

[课后练习]:

7、某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是()。

A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法

C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法

8、我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为

A.45,75,15B.45,45,45C.30,90,15D.45,60,30()

9、某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是

A.6,12,18B.7,11,19C.6,13,17D.7,12,17()

10、某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是()。

A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法

11、一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的频率为()。

A.1/80B.1/24C.1/10D.1/8

12、一个年级共有20个班,每个班学生的学号都是1~50,为了交流学习的经验,要求每个班学号为22的学生留下,这里运用的是。﹙﹚

分层抽样法抽签法随机抽样法系统抽样法

13、为了保证分层抽样时每个个体等可能的被抽取,必须要求。﹙﹚

。不同层次以不同的抽样比抽样每层等可能的抽样

每层等可能的抽取一样多个个体,即若有K层,每层抽样个,。

D.每层等可能抽取不一样多个个体,各层中含样本容量个数为﹙﹚,即按比例分配样本容量,其中是总体的个数,是第i层的个数,n是样本总容量。

14、某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解决学校机构改革意见,要从中抽取一个容量为20的样本,若用分层抽样法,则行

政人员应抽取__人,教师应抽取__人,后勤人员应抽取__人

15、某校高一、高二、高三,三个年级的学生人数分别为1500人,1200人和1000人,现采用按年级分层抽样法了解学生的视力状况,已知在高一年级抽查了75人,则这次调查三

个年级共抽查了___人。

16、某公司生产三种型号的轿车,产量分别是1200辆、6000辆和2000辆,为检验公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取__、__、__辆。

17、某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽

样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量

18、某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中不到40岁的教师中应抽取的人数是___________.

19、从含有100个个体的总体中抽取10个个体,请用系统抽样法给出抽样过程

20、一个单位的职工有500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人。为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?

最新八年级数学练习题及答案 篇二

1、村旁有棵大树,树下有头牛,主人用2米长的绳子拴住了牛鼻子。主人把饲草放在离树3米处,可是,没过多会儿牛把饲草都吃光了,绳子没解开,也没断,这是怎以回事?

2、再过10天,圣诞节就到了。孤儿小汤姆渴望得到一份圣诞礼物,于是他给“妈妈”写了一封信,信要经过5天才能寄到伦敦。请问:小汤姆能在圣诞节那天收到“母亲”的礼物吗?

3、在海拔1500米的高空中,一架直升飞机在盘旋,一会飞机停在高空中不动了。这时机舱里钻出一个人,勇敢地往地面跳去,他并没有带降落伞,跌到地面上也没有任何伤,你知道这是怎么回事?

4、小明站在10米高的河堤上,堤下边是一片鹅卵石。他手持一个废灯泡往下扔。试问:灯泡下落到10米的地方,会不会被打破?

5、图书馆的工具书阅览室闭馆后,管理人员在整理图书时发现那本大百科全书的第21、42、84、85、151、159、160和180页被某个缺少公德的人偷偷地撕下带走了。按图书馆的规定,撕下一本书的一张要罚款10元。请问,若抓 ……此处隐藏5113个字……划合建一座物流中心,要求所建物流中心必须满足下列条件:①到两条公路的距离相等;②到A、B两村的距离也相等。

请你通过作图确定物流中心的位置。(要求:尺规作图,保留作图痕迹,不写作法)

初二数学试题练习篇五

一、选择题

1、下列条件中,能判定四边形是平行四边形的是( )

A.一组对角相等 B.对角线互相平分

C.一组对边相等 D.对角线互相垂直

2、如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是( )

A.4 B.3 C. D.

3、满足下列条件的三角形中,不是直角三角形的是( )

A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3

C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5

5、已知直角三角形两边的长分别为3和4,则此三角形的周长为( )

A.12 B.7+

C.12或7+ D.以上都不对

二、填空题

1、使 有意义的 的取值范围是 。

2、当 时, =_____________。

三、解答题

1、(6分)有一道练习题:对于式子 先化简, 后求值,其中 。小明的解法如下: = = = = 。小明的解法对吗?如果不对,请改正。

2、(6分)已知 , 为实数,且 ,求 的值。

3、(6分)阅读下列解题过程:

已知 为△ 的三边长,且满足 ,试判断△ 的形状。

解:因为 , ①

所以 。 ②

所以 。 ③

所以△ 是直角三角形。 ④

回答下列问题:

(1)上述解题过程,从哪一步开始出现错误?该步的序号为 。

(2)错误的原因为 。

(3)请你将正确的解答过程写下来。

初二数学练习篇六

一、填空题(每题3分,共30分)

1、函数y=+中自变量x的取值范围是。

2、某种感冒病毒的直径是0.00000012米,用科学记数法表示为。

3、计算:;;

4、若x2+2(m-3)x+16是完全平方式,则m的值等于

5、的最简公分母是。

6、化简的结果是。

7、当时,分式为0

8、填空:x2+()+14=()2;

()(-2x+3y)=9y2—4x2

9、若一次函数y=(2-m)x+m的图象经过第一、二、四象限时,m的取值范围是________,若它的图象不经过第二象限,m的取值范围是________.

10、某市自来水公司为了鼓励市民节约用水,采取分段收费标准。某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示。请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为_________元/吨;若用水超过5吨,超过部分的水费为____________元/吨。

二、选择题(每题3分,共30分)

初二数学期中试题下册11、下列式子中,从左到右的变形是因式分解的是()

A、(x-1)(x-2)=x2-3x+2B、x2-3x+2=(x-1)(x-2)

C、x2+4x+4=x(x一4)+4D、x2+y2=(x+y)(x—y)

15、多项式(x+m)(x-3)展开后,不含有x的一次项,则m的取值为( )

A. m=0B. m=3C. m=-3D. m=2

16、点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3图象上的两个点,且x1

A.y1>y2B.y1>y2>0C.y1

18、如果解分式方程出现了增根,那么增根可能是()

A、-2B、3C、3或-4D、-4

19、若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是()。

A(0,-2)B(,0)C(8,20)D(,)

20、小敏家距学校米,某天小敏从家里出发骑自行车上学,开始她以每分钟米的速度匀速行驶了米,遇到交通堵塞,耽搁了分钟,然后以每分钟米的速度匀速前进一直到学校,你认为小敏离家的距离与时间之间的函数图象大致是()

三、计算题(每题4分、共12分)

1、2(m+1)2-(2m+1)(2m-1)2、

四、因式分解(每题4分、共12分)

1、8a3b2+12ab3c2、a2(x-y)-4b2(x-y)

3、2x2y-8xy+8y

五、求值(本题5分)

课堂上,李老师出了这样一道题:

已知,求代数式,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。

六、解答题(1、2题每题6分,3题9分)

1某旅游团上午8时从旅馆出发,乘汽车到距离180千米的某著名旅游景点游玩,该汽车离旅馆的距离S(千米)与时间t(时)的关系可以用图6的折线表示。根据图象提供的`有关信息,解答下列问题:

⑴求该团去景点时的平均速度是多少?

⑵该团在旅游景点游玩了多少小时?

⑶求出返程途中S(千米)与时间t(时)的函数关系式,并求出自变量t的取值范围。

2、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:

请根据图2中给出的信息,解答下列问题:

(1)放入一个小球量桶中水面升高___________;

(2)求放入小球后量桶中水面的高度()与小球个数(个)之间的一次函数关系式(不要求写出自变量的取值范围);

(3)量桶中至少放入几个小球时有水溢出?

3、某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台。经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:

型号A型B型

成本(元/台)22002600

售价(元/台)28003000

(1)冰箱厂有哪几种生产方案?

(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?

(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学。其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种。

你也可以在搜索更多本站小编为你整理的其他初二数学的练习题(精品多篇)范文。

《初二数学的练习题(精品多篇)(全文共7815字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式